Research article

Chlorophycean algae in Khumbu Himalaya region of Nepal, including four new records.

Narayan Prasad Ghimire¹*, Shiva Kumar Rai², Pramod Kumar Jha¹ and G.U. Caravello³

¹Central Department of Botany, Tribhuvan University, Kathmandu, Nepal ²Department of Botany, Post Graduate Campus, Tribhuvan University, Biratnagar, Nepal ³Department of Environment Health and Hygiene, Padova University, Padova , Italy *E-mail: <u>nghimire077@gmail.com</u>

Abstract

A study was conducted to document the chlorophyceaen algae in the waterbodies of Sagarmatha National Park and Buffer zone, Solukhumbu, Nepal. A total 27 taxa of green algae including four new records were identified. The following algae *viz., Euastrum oblongum, Penium cylindrus, Scenedesmus quadricauda* and *Spirogyra amplectens* were found new to Nepal. These species were collected from running water, stagnant water, rocky and sloppy moist habitats at Pheriche, luza khola, below 1st lake, in 1st lake, Namche and Larcha dovan between 2700-4600 m elevation. **Copyright © WJSTR, all rights reserved.**

Key words: Algae, Chlorophyceae, Sagarmatha National Park, Khumbu Himalaya, Nepal

Introduction

Information about taxonomy and diversity of algae in Nepal is inadequate, particularly from high lands of Nepal. Hutchinson (1937) observed algae in two high altitude lakes of Nepal. More than 176 taxa from high altitude Himalayan region of eastern and central Nepal were recorded by Hirano (1963, 1984), which is the major contribution in the Nepalese algal flora. Suxena *et al.* (1972), Hickel (1973), Shrestha and Manandhar (1983), Ishida (1986), Aizaki (1987), Habib (1997), Rothfritz *et al.* (1997), Rai (2005) and Ghimire *et al* (2012a) and Ghimire *et al* (2012 b) have also made important contribution in high altitude algal flora of Nepal. Loffler (1960) studied the lakes in Khumbu valley and mentioned very poor phytoplankton assemblages. Ruggia *et al.* (1998) identified thirteen species were, most of them were not recorded previously in the Khumbu region. Kumar and Rai (2005) also recorded 13 taxa of chlorophyceae from Sikkim-Himalayas. These studies on chlorophyceae provide new information and the paper focuses on the enumeration of chlorophyceae in high altitude area in Sagarmatha National Park (SNP), Nepal.

Materials and Methods

Study Area: SNP located in the southern slope of Sagarmatha (Mt. Everest), lies in the Solukhumbu district of the north eastern region of Nepal and covers 1148 sq. km (Fig. 1). It ranges between 27°30'19" and 27°06'45"N latitude to 86°30'53" to 86°99'08"E longitude. The park is characterized by rugged topography with altitude ranging from 2845 m at Jorsalle to 8848 m at the top of Mt. Everest. About 80% of the precipitation falls in the monsoon season from June to September. An average minimum temperature is in January where as maximum during August (-7.7 to 16.2°C). Four major rivers namely Dudh Koshi, Lobuche Khola, Imja Khola and Bhote Koshi drain from north to south. Dudh Koshi originates from Ngozumpa glacier and Gokyo lake system. Lobuche Khola originates in Khumbu Glacier, and Imja Khola from Imja Lake and Glaciers. The Lobuche and Imja Khola meet with each other below Dingboche and in Imja Khola. This Imja Khola meets Dudh Koshi elow Phortse, and again called Dudh Koshi. Bhote Koshi originates in Tibet and it meets Dudh Koshi at Larja dobhan below the Namche Bazar. Several tributaries feed these major river systems. The major lake systems in the SNP are Imja and Gokyo.

Figure 1: Map showing sampling points, Sagarmatha National Park.

Sample collection

Three visits to SNPBZ were made in October, 2007; May, 2008 and October, 2008 for exploration of algae. The sampling sites were mostly selected along the trekking routes from Lukla to Everest base camp, Gokyo, Imja Lake and Thame (Fig. 1). Samples of algae were collected from different corners of lakes, different sides of

rivers as well as moist rocks near water courses between 9:00 to 12:00 am. Samples were preserved in 4% unbuffered formalin and collected into plastic bottle. Identification of species was made by the use of a Leica binocular microscope and consulting relevant monographs. The classification of taxa was done according to Prescott (1951). Forty five samples (fifteen in each visit) were collected from three visits.

Results and Discussion

A total of twenty seven chlorophyceaean algae under 20 genera were recorded from SNP and its buffer zone area, a high altitude region, Nepal (Table 1). Out of these, 20 algae were identified up to species level where as seven were identified only up to genus level. Twenty genera were *Actinotaenium* (1 sp.), *Bulbochaete* (1sp.), *Chlorella* (1sp.), *Closterium* (1 sp.), *Cosmarium* (4 spp.), *Cylindrocapsa* (1sp.), *Cylindrocystis* (1 sp.), *Euastrum* (2 spp.), *Hyalotheca* (1sp.), *Mougeotia* (1 sp.), *Netrium* (1 sp.), *Oedogonium* (1 sp.), *Pediastum* (1sp.), *Penium* (1 sp.), *Phacus* (1 sp.), *Scenedesmus* (4 spp.), *Sphaerocystis* (1 sp.), *Spirogyra* (1sp.), *Staurastrum* (1sp.) and *Zygnema* (1 sp.). In the present study, four algal taxa *viz.*, *Euastrum coralloides* Josh. var. *trigibberum* Lagerheim, *Euastrum oblongum* (Grev.) Ralfs ex Ralfs, *Penium cylindrus* (Ehr.) ex Bréb. and *Spirogyra amplectens* Skuja were reported for the first time from Nepal.

Generally unicellular, colonial algae and desmids were found to be dominant in stagnant waters where as filamentous green algae were common in both running and stagnant water bodies. Due to chilling temperature, chlorophycean algae were not as much dominant as in warm climate of Tarai of the country.

Green algae common to this area like *Closterium*, *Scenedesmus*, *Cosmerium*, *Spirogyra* genera have also been reported from Sikkim Himalaya range, 300-5,500 m elevations (Kumar and Rai, 2005). Yoshimura *et al.* (1997) also reported five species of algae from Yala glacier, central Nepal (Lantang region). Among them one species *Cylindrocystis brebissonii* is also found in Khumbu region. Takeuchi *et al.* (1998) also reported *Cylindrocystis brebissonii* from Himalayan glacier (Shorong region of East Nepal) altitude between 4950-5380 m.

S.N.	species	Locality	Altitude (m)	Habitat			
1	Actinotaenium cf. subglobosum	Larcha dovan	2700	Stagnant water at edge of Dudh kosi river			
2	Bulbochaete sp.	1 st Lake gokyo	4660	From outlet of 1 st lake Gokyo			
3	Chlorella vulgaris	Between 1 st and 2 nd lake	4650	Slow running water			
4	Closterium acerosum	Between 1 st and 2 nd lake, Namche, Pheriche, Thamo, 2 nd and 3 rd lake	3400-4700	Running water			
5	Cosmarium subspeciosum	Luza, Pheriche	4300	Stagnant as well as running			
6	Cosmarium awadhense	Thame, 1 st lake	3700-4660	Stagnant water			
7	Cosmarium cf. sublateriundatum	Larcha dovan	2700	Stagnant water with rocky habitat			

Table 1: Chlorophycean algae from Sagarmatha National Park and Buffer Zone.

8	Cosmarium nudum	Just below to 1 st lake	4600	Moist sloppy rocks
19	<i>Cylindrocapsa</i> sp.	Namche spring	3400	Running water
10	Cylindrocystis brebissonii	Luza khola	4300	Running water
11	Euastrum coralloide var. trigibberum	Luza khola	4300	Running water
12	Euastrum oblongum	Pheriche	4300	Stagnant water
13	Hyalotheca dissiliens	Pheriche	4300	Stagnant water
14	<i>Mougeotia</i> sp.	Below 1 st lake, between 1 st and 2 nd lake, Luza, pheriche	4300-4700	Moist steep rocks, stagnant as well as running water
15	Netrium digitus	Luza	4300	Running water
16	<i>Oedogonium</i> sp.	Between pheriche and lobuche, 1 st lake	4300-4660	Stagnant water
17	Pediastum duplex	Between pheriche and lobuche	4300	Stagnant water
18	Penium cylindrus	Pheriche	4300	Stagnant water
19	Phacus sp.	Namche	3400	Running water
20	Scenedesmus bijugatus	Pheriche, Namche	3400-4300	Running water
21	S. quadricauda	Just below to 1 st lake, Pheriche	4300-4600	Sloppy moist rocky region and running water
22	S. bijuga	Below pheriche and lobuche	4300	Stagnant water
23	S. obliquus	Namche	3400	Running water
24	Sphaerocystis schroeteri	Between pheriche and lobuche	4300	Stagnant water
25	Spirogyra amplectens	Below 1 st lake,1 st lake, Namche, Larcha dovan	2700-4660	Rocky sloppy region, running water, stagnant water
26	Staurastrum sp.	Larcha dovan, Luza, Namche, between 1 st and 2 nd lake, between pheriche and lobuche	2700-4700	Running as well as stagnant water
27	Zygnema sp.	Lobuche khola, Just below to 1 st lake, between 2 nd and 3 rd lake.	4700-4900	Moist rocky habitat as well as running water

(Source: field study, 2007-08)

Taxonomical descriptions of new algae are as follows:

1. *Euastrum coralloides* Josh. var. *trigibberum* Lagerheim (Fig. 2)

Class- Zygnematophyceae Order- Desmidiales Family- Desmidiaceae Genus- *Euastrum* Species- *E. coralloides*

Cell 40 μm long, 30 μm broad; semicell has five facial swellings; isthmus 13 μm wide; thickness 19 μm. *Euastrum oblongum* (Grev.) Ralfs ex Ralfs (Fig. 3)

Class- Zygnematoophyceae Order- Desmidiales Family- Desmidiaceae

Genus- *Euastrum* Species- *E. oblongum*Cell 148 μm long, 74 μm broad; a deep, closed median apical invagination, lateral invaginations many. *Penium cylindrus* (Ehr.) ex Bréb.(Fig.4) Class- Zygnematoophyceae Order- Zygnematales Family- Peniaceae Genus- *Penium* Species- *P. cylindrus*Cell 41 μm long, 11.5 μm broad, cylindrical with truncately rounded ends; cell wall dotted, bands present. *Spirogyra amplectens* Skuja (Fig. 5) Class- Zygnematales Family- Zygnematales Family- Zygnematales Family- Zygnemataceae Genus- *Spirogyra*

Species- S. amplectens

Vegetative cell 143 µm long, 18 µm broad; chloroplast single; conjugation lateral; zygospore 61 µm long, 36 µm broad, ellipsoid.

Figure 2: E. coralloides var. trigibberum

Figure 4: Penium cylindrus

Figure 3: Euastrum oblongum

Figure 5: Spirogyra amplectens

Plate 1: Photographs of new taxa of chlorophycean algae.

Acknowledgements

Thanks to HKKH Partnership Project for financial support to conduct this research. We are thankful to the Department of National Park and Wildlife Conservation and the Sagarmatha National Park for permission to work in Sagarmatha National Park and Buffer Zone.

References

[1] Aizaki, M., Terashima, A., Nakahara, H., Nishio, T. and Ishida, Y. (1987). Tropic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia, 153(3): 217-224.

[2] Baral, S.R. (1999). Algae of Nepal. 655-681. In eds Nature's paradise . T.C. Majpuria and R. Kumar, Gwalior, India, pp 655-681.

[3] Ghimire N.P., Rai, S.K., Jha, P.K. and Caravello G.U. (2012 a). Some Bacillariophyceae from Nepal, including a new record. In: Indian Hydrobiology, care of Krishnamurthy Institute of Algology. 15 (2):189-193.

[4] Ghimire, N.P., Rai, S.K. and Jha P.K. (2012 b). Cyanobacteria from khumbu region (mt.Everest) including a new record for Nepal. In: Indian Hydrobiology, care of Krishnamurthy Institute of Algology. 15 (2): 223-226.

[5] Habib, I. (1997). Algal flora from Mahendranagar, Nepal. J. Econ. and Taxon. Bot. (India) 21(1): 19-26.

[6] Hickel, B. (1973). Limnogical investigations in lakes of Pokhara valley, Nepal. Int. Rev. Ges. Hydrobiol. 58(5): 659-672.

[7] Hirano, M. (1963). Fresh water algae from the Nepal Himalaya, collected by a member of Japanese of Education, Science and culture, Kyoto, Japan. pp 3-13.

[8] Hirano, M. (1984). Fresh water algae from east Nepal. Study report of Baika Junior college 32: 197-215.

[9] Ishida, Y. (Ed.) (1986). Studies on distribution, adaptation and evolution of micro-organisms in Nepal Himalayas (Second Report). Kyoto. Japan. pp. 3-13.

[10] Kumar, S. and Rai, S.K. (2005). Contribution to the algal flora(Chlorophyceae) Namchi, Sikkim-Himalayas. Our Nature 3: 50-55.

[11] Loffler, H. (1960). High altitude lakes in Mt. Everest region. Verh. int. Ver. Limnol. 17: 373-385.

[12] Rai, S.K. (2005). Preliminary reports of diatoms from maipokhari lake, Ilam, Nepal. Our Nature 3(1): 26-30.

[13] Rothfritz, H., Juettner, I., Suren, A.M. and Ormerod , S.J. (1997). Epiphytic and epilitic diatoms communities along environmental gradient in the Nepalese Himalaya, Implications for the assessment of biodiversity and water quality. Archiv. of. Hydrobiol. 138(4):465-482.

[14] Ruggia, D., Bertoni, R., Callieri, C., Manka, M. and Nocentini, A.M. (1998). Assessment of biota in lakes from the khumbu valley, High Himalayas. In. Top of the world Environmental Research: Mount Everest-Himalayan-Ecosystem. Eds. R. Baudo, G. Tartari and M. Munawar, Ecovision World Monograph Series, Backhuys Publisher, Leiden, The Netherlands. pp. 219-233.

[15] Shrestha, B and Manandhar, J.D. (1983). Contribution to the algal flora of Kathmandu valley. J. Inst. Sci. Techn. T.U. (Nepal) 6: 1-6

[16] Suxena, M.R. and Venkateswarlu, V. (1968). Algae of cho-oyu (E-himalaya) Expedition-1 Bacillariophyceae Hydrobiologia, 32: 1-26.

[17] Suxena, M.R., Venkateswarlu, V. and Rao, V.S. (1972). Algae of the Cho Oyo (E. Himalaya) Expedition-2, Bacillariophyceae-2. Nova Hedwigia, 23 (2-3): 415-426.

[18] Takeuchi, N., Koshima, S. and Fujita, K. (1998): Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal; relationship with glacier summer mass balance. Bull. Glac. Res., 16:43-50.[19] Yoshimura, Y., Kohshima, S. and Ohtani, S. (1977). A community of snow algae on Himalayan glacier:

Change of algal biomass and community structure with altitude. Arctic and Alpine Research, 29: 126-137.